L11a524

From Knot Atlas
Revision as of 12:09, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a523.gif

L11a523

L11a525.gif

L11a525

L11a524.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a524 at Knotilus!


Link Presentations

[edit Notes on L11a524's Link Presentations]

Planar diagram presentation X8192 X22,10,13,9 X18,8,19,7 X20,17,21,18 X6,22,1,21 X4,11,5,12 X16,6,17,5 X10,16,11,15 X12,20,7,19 X2,13,3,14 X14,3,15,4
Gauss code {1, -10, 11, -6, 7, -5}, {3, -1, 2, -8, 6, -9}, {10, -11, 8, -7, 4, -3, 9, -4, 5, -2}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a524 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} z^{-2} + a^{-4} -a^2 z^6-2 z^6 a^{-2} -2 a^2 z^4-6 z^4 a^{-2} -5 z^2 a^{-2} -2 a^{-2} z^{-2} +a^2-2 a^{-2} +z^8+4 z^6+5 z^4+z^2+ z^{-2} } (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         71 6
7        104  -6
5       146   8
3      1311    -2
1     1513     2
-1    1014      4
-3   814       -6
-5  411        7
-7 17         -6
-9 4          4
-111           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a523.gif

L11a523

L11a525.gif

L11a525