L11n388

From Knot Atlas
Revision as of 12:13, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n387.gif

L11n387

L11n389.gif

L11n389

L11n388.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n388 at Knotilus!


Link Presentations

[edit Notes on L11n388's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X8493 X22,11,19,12 X18,22,5,21 X20,10,21,9 X10,17,11,18 X16,19,17,20 X2,14,3,13
Gauss code {1, -11, 5, -3}, {10, -8, 7, -6}, {-4, -1, 2, -5, 8, -9, 6, 4, 11, -2, 3, -10, 9, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n388 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^6 z^{-2} -2 a^6-a^4 z^4+2 a^4 z^2+4 a^4 z^{-2} +7 a^4+a^2 z^6+2 a^2 z^4-2 a^2 z^2-5 a^2 z^{-2} -8 a^2-z^4+2 z^{-2} +3} (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123χ
5        1-1
3       4 4
1      31 -2
-1     84  4
-3    67   1
-5   64    2
-7  36     3
-9 36      -3
-11 3       3
-133        -3
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n387.gif

L11n387

L11n389.gif

L11n389