L11a154

From Knot Atlas
Revision as of 12:13, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a153.gif

L11a153

L11a155.gif

L11a155

L11a154.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a154 at Knotilus!


Link Presentations

[edit Notes on L11a154's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X22,16,7,15 X14,5,15,6 X4,13,5,14 X20,18,21,17 X12,20,13,19 X18,12,19,11 X16,22,17,21 X2738 X6,9,1,10
Gauss code {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, 8, -7, 5, -4, 3, -9, 6, -8, 7, -6, 9, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a154 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^{10}-z^{10}-3 a^3 z^9-6 a z^9-3 z^9 a^{-1} -3 a^4 z^8-4 a^2 z^8-4 z^8 a^{-2} -5 z^8-3 a^5 z^7+7 a^3 z^7+18 a z^7+5 z^7 a^{-1} -3 z^7 a^{-3} -2 a^6 z^6+4 a^4 z^6+17 a^2 z^6+11 z^6 a^{-2} -z^6 a^{-4} +23 z^6-a^7 z^5+6 a^5 z^5-12 a^3 z^5-27 a z^5+z^5 a^{-1} +9 z^5 a^{-3} +4 a^6 z^4-a^4 z^4-28 a^2 z^4-8 z^4 a^{-2} +3 z^4 a^{-4} -34 z^4+3 a^7 z^3-5 a^5 z^3+7 a^3 z^3+21 a z^3-6 z^3 a^{-3} -a^6 z^2-2 a^4 z^2+15 a^2 z^2+5 z^2 a^{-2} -2 z^2 a^{-4} +23 z^2-2 a^7 z+4 a^5 z-a^3 z-10 a z-2 z a^{-1} +z a^{-3} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} } (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          2 2
6         41 -3
4        52  3
2       74   -3
0      75    2
-2     78     1
-4    56      -1
-6   37       4
-8  25        -3
-10  3         3
-1212          -1
-141           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a153.gif

L11a153

L11a155.gif

L11a155