L11a165

From Knot Atlas
Revision as of 12:16, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a164.gif

L11a164

L11a166.gif

L11a166

L11a165.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a165 at Knotilus!


Link Presentations

[edit Notes on L11a165's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X20,18,21,17 X18,12,19,11 X12,20,13,19 X22,16,7,15 X16,22,17,21 X6718 X4,13,5,14
Gauss code {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, 6, -7, 11, -4, 8, -9, 5, -6, 7, -5, 9, -8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a165 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^5+4 a^5 z^3+4 a^5 z+a^5 z^{-1} -a^3 z^7-5 a^3 z^5-8 a^3 z^3-5 a^3 z-a z^7-5 a z^5+z^5 a^{-1} -8 a z^3+4 z^3 a^{-1} -6 a z+4 z a^{-1} -2 a z^{-1} + a^{-1} z^{-1} } (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
8           1-1
6          1 1
4         31 -2
2        31  2
0       43   -1
-2      53    2
-4     45     1
-6    44      0
-8   24       2
-10  24        -2
-12  2         2
-1412          -1
-161           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a164.gif

L11a164

L11a166.gif

L11a166