L11a67

From Knot Atlas
Revision as of 12:20, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a66.gif

L11a66

L11a68.gif

L11a68

L11a67.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a67 at Knotilus!


Link Presentations

[edit Notes on L11a67's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X14,9,15,10 X10,20,11,19 X8,21,9,22 X18,14,19,13 X20,15,21,16 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -7, 5, -6, 11, -2, 8, -5, 9, -3, 4, -8, 6, -9, 7, -4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a67 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+9 t(2)^4+12 t(1) t(2)^3-16 t(2)^3-16 t(1) t(2)^2+12 t(2)^2+9 t(1) t(2)-5 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}}} (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^7+3 z^3 a^5+3 z a^5+2 a^5 z^{-1} -3 z^5 a^3-6 z^3 a^3-7 z a^3-4 a^3 z^{-1} +z^7 a+3 z^5 a+6 z^3 a+5 z a+3 a z^{-1} -z^5 a^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} } (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
8           11
6          4 -4
4         91 8
2        114  -7
0       159   6
-2      1612    -4
-4     1314     -1
-6    1116      5
-8   713       -6
-10  312        9
-12 16         -5
-14 3          3
-161           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{13}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{16}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{14}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{15}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a66.gif

L11a66

L11a68.gif

L11a68