L11a67
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a67's Link Presentations]
Planar diagram presentation | X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X14,9,15,10 X10,20,11,19 X8,21,9,22 X18,14,19,13 X20,15,21,16 X2536 X4,11,1,12 |
Gauss code | {1, -10, 2, -11}, {10, -1, 3, -7, 5, -6, 11, -2, 8, -5, 9, -3, 4, -8, 6, -9, 7, -4} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+9 t(2)^4+12 t(1) t(2)^3-16 t(2)^3-16 t(1) t(2)^2+12 t(2)^2+9 t(1) t(2)-5 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}}} (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^7+3 z^3 a^5+3 z a^5+2 a^5 z^{-1} -3 z^5 a^3-6 z^3 a^3-7 z a^3-4 a^3 z^{-1} +z^7 a+3 z^5 a+6 z^3 a+5 z a+3 a z^{-1} -z^5 a^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} } (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|