L11n378

From Knot Atlas
Revision as of 12:21, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n377.gif

L11n377

L11n379.gif

L11n379

L11n378.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n378 at Knotilus!


Link Presentations

[edit Notes on L11n378's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X5,10,6,11 X3849 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X9,16,10,17 X2,14,3,13
Gauss code {1, -11, -5, 3}, {-8, 7, 9, -6}, {-4, -1, 2, 5, -10, 4, -7, 8, 11, -2, -3, 10, 6, -9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n378 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-7} + q^{-6} -2 q^{-5} +3 q^{-4} -2 q^{-3} +3 q^{-2} - q^{-1} +3} (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
1       33
-1      242
-3     1 12
-5    12  1
-7   21   1
-9   1    1
-11 12     -1
-13        0
-151       -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n377.gif

L11n377

L11n379.gif

L11n379