L11n452

From Knot Atlas
Revision as of 17:31, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n451.gif

L11n451

L11n453.gif

L11n453

L11n452.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n452 at Knotilus!


Link Presentations

[edit Notes on L11n452's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,20,12,21 X13,19,14,22 X21,18,22,9 X17,13,18,12 X8,16,5,15 X14,8,15,7 X19,17,20,16 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 8, -7}, {-9, 3, -5, 4}, {11, -2, -3, 6, -4, -8, 7, 9, -6, 5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n452 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8            0
6        211 2
4       21   -1
2      521   4
0     581    2
-2    234     3
-4   35       2
-6  32        1
-8 15         4
-10 1          -1
-121           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n451.gif

L11n451

L11n453.gif

L11n453