L10n10
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n10's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X13,2,14,3 |
| Gauss code | {1, 10, -5, -3}, {-4, -1, 2, 5, -6, 9, -8, 4, -10, -2, 3, 6, -7, 8, -9, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-2 t(1) t(2)^4-2 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{9/2}}+\frac{1}{q^{7/2}}-\frac{2}{q^{5/2}}+\frac{1}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z+a^9 z^{-1} -a^7 z^5-5 a^7 z^3-6 a^7 z-3 a^7 z^{-1} +a^5 z^7+6 a^5 z^5+11 a^5 z^3+9 a^5 z+4 a^5 z^{-1} -a^3 z^5-5 a^3 z^3-6 a^3 z-2 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z a^{11}-z^2 a^{10}+a^{10}-z^3 a^9+2 z a^9-a^9 z^{-1} -z^6 a^8+4 z^4 a^8-4 z^2 a^8+3 a^8-2 z^7 a^7+11 z^5 a^7-18 z^3 a^7+12 z a^7-3 a^7 z^{-1} -z^8 a^6+4 z^6 a^6-z^4 a^6-5 z^2 a^6+3 a^6-3 z^7 a^5+17 z^5 a^5-28 z^3 a^5+17 z a^5-4 a^5 z^{-1} -z^8 a^4+5 z^6 a^4-5 z^4 a^4-2 z^2 a^4+2 a^4-z^7 a^3+6 z^5 a^3-11 z^3 a^3+8 z a^3-2 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



