L11a150
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a150's Link Presentations]
| Planar diagram presentation | X8192 X16,7,17,8 X10,4,11,3 X2,15,3,16 X14,10,15,9 X18,11,19,12 X12,5,13,6 X6,21,1,22 X20,14,21,13 X22,17,7,18 X4,20,5,19 |
| Gauss code | {1, -4, 3, -11, 7, -8}, {2, -1, 5, -3, 6, -7, 9, -5, 4, -2, 10, -6, 11, -9, 8, -10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u^2 v^4-7 u^2 v^3+9 u^2 v^2-5 u^2 v+u^2-3 u v^4+12 u v^3-19 u v^2+12 u v-3 u+v^4-5 v^3+9 v^2-7 v+2}{u v^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{20}{q^{9/2}}-q^{7/2}+\frac{27}{q^{7/2}}+5 q^{5/2}-\frac{32}{q^{5/2}}-12 q^{3/2}+\frac{31}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{5}{q^{13/2}}+\frac{12}{q^{11/2}}+20 \sqrt{q}-\frac{28}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^5 z^5-a^5 z^3+a^3 z^7+2 a^3 z^5+a^3 z^3+a^3 z^{-1} +a z^7+2 a z^5-z^5 a^{-1} +a z^3-z^3 a^{-1} -a z-a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^8 z^6-a^8 z^4+5 a^7 z^7-8 a^7 z^5+3 a^7 z^3+11 a^6 z^8-22 a^6 z^6+13 a^6 z^4-2 a^6 z^2+12 a^5 z^9-19 a^5 z^7+4 a^5 z^5+2 a^5 z^3+5 a^4 z^{10}+16 a^4 z^8-53 a^4 z^6+36 a^4 z^4-6 a^4 z^2+26 a^3 z^9-47 a^3 z^7+18 a^3 z^5+z^5 a^{-3} +a^3 z-a^3 z^{-1} +5 a^2 z^{10}+22 a^2 z^8-59 a^2 z^6+5 z^6 a^{-2} +36 a^2 z^4-3 z^4 a^{-2} -6 a^2 z^2+a^2+14 a z^9-11 a z^7+12 z^7 a^{-1} -9 a z^5-14 z^5 a^{-1} +6 a z^3+5 z^3 a^{-1} +a z-a z^{-1} +17 z^8-24 z^6+11 z^4-2 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



