L11n8

From Knot Atlas
Revision as of 17:53, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n7.gif

L11n7

L11n9.gif

L11n9

L11n8.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n8 at Knotilus!


Link Presentations

[edit Notes on L11n8's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X11,20,12,21 X19,22,20,5 X13,19,14,18 X21,12,22,13 X2,16,3,15
Gauss code {1, -11, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 10, -9, 4, 11, -2, -3, 9, -8, 7, -10, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n8 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
4         11
2        1 -1
0       31 2
-2      33  0
-4     321  2
-6    34    1
-8   23     -1
-10  131     1
-12 12       -1
-14 1        1
-161         -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-7}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n7.gif

L11n7

L11n9.gif

L11n9