L11n392

From Knot Atlas
Revision as of 18:02, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n391.gif

L11n391

L11n393.gif

L11n393

L11n392.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n392 at Knotilus!


Link Presentations

[edit Notes on L11n392's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X22,14,19,13 X20,10,21,9 X10,20,11,19 X14,22,15,21 X11,18,12,5 X2,16,3,15
Gauss code {1, -11, 5, -3}, {8, -7, 9, -6}, {-4, -1, 2, -5, 7, -8, -10, 4, 6, -9, 11, -2, 3, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n392 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^5-a^5 z^3+4 a^4 z^6-5 a^4 z^4+6 z^4 a^{-4} +2 a^4 z^2-11 z^2 a^{-4} -2 a^{-4} z^{-2} +8 a^{-4} +8 a^3 z^7+3 z^7 a^{-3} -14 a^3 z^5-3 z^5 a^{-3} +9 a^3 z^3+10 z^3 a^{-3} -3 a^3 z-13 z a^{-3} +a^3 z^{-1} +5 a^{-3} z^{-1} +7 a^2 z^8+5 z^8 a^{-2} -6 a^2 z^6-8 z^6 a^{-2} -4 a^2 z^4+17 z^4 a^{-2} -24 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} +2 a^2+16 a^{-2} +2 a z^9+2 z^9 a^{-1} +15 a z^7+10 z^7 a^{-1} -38 a z^5-26 z^5 a^{-1} +29 a z^3+29 z^3 a^{-1} -14 a z-24 z a^{-1} +5 a z^{-1} +9 a^{-1} z^{-1} +12 z^8-18 z^6+12 z^4-15 z^2-4 z^{-2} +11} (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         33
7        52-3
5       81 7
3      65  -1
1     118   3
-1    78    1
-3   69     -3
-5  37      4
-7 16       -5
-9 3        3
-111         -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{11}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n391.gif

L11n391

L11n393.gif

L11n393