L11n393

From Knot Atlas
Revision as of 18:04, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n392.gif

L11n392

L11n394.gif

L11n394

L11n393.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n393 at Knotilus!


Link Presentations

[edit Notes on L11n393's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X13,22,14,19 X9,20,10,21 X19,10,20,11 X21,14,22,15 X18,12,5,11 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-8, 7, -9, 6}, {4, -1, 2, -5, -7, 8, 10, -4, -6, 9, 11, -2, 3, -10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n393 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5            0
3        211 -2
1       31   2
-1      441   -1
-3     332    2
-5    34      1
-7   431      2
-9  25        3
-11 12         -1
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n392.gif

L11n392

L11n394.gif

L11n394