L11a464
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a464's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X16,6,17,5 X8493 X20,9,21,10 X10,19,11,20 X22,18,15,17 X18,22,19,21 X14,16,5,15 X2,12,3,11 |
| Gauss code | {1, -11, 5, -3}, {10, -4, 8, -9, 7, -6, 9, -8}, {4, -1, 2, -5, 6, -7, 11, -2, 3, -10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^6-5 q^5+10 q^4-14 q^3+19 q^2-20 q+21-16 q^{-1} +12 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^6 a^{-2} -z^6+2 a^2 z^4-z^4 a^{-2} +z^4 a^{-4} -2 z^4-a^4 z^2+4 a^2 z^2+2 z^2 a^{-2} -5 z^2-a^4+4 a^2+4 a^{-2} - a^{-4} -6+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-6} -z^4 a^{-6} +5 z^7 a^{-5} +a^5 z^5-10 z^5 a^{-5} -2 a^5 z^3+2 z^3 a^{-5} +a^5 z+z a^{-5} +9 z^8 a^{-4} +3 a^4 z^6-22 z^6 a^{-4} -6 a^4 z^4+11 z^4 a^{-4} +5 a^4 z^2+z^2 a^{-4} -2 a^4-2 a^{-4} +7 z^9 a^{-3} +4 a^3 z^7-11 z^7 a^{-3} -3 a^3 z^5-2 z^5 a^{-3} -3 a^3 z^3+z^3 a^{-3} +3 a^3 z+3 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+11 z^8 a^{-2} +3 a^2 z^6-33 z^6 a^{-2} -17 a^2 z^4+16 z^4 a^{-2} +18 a^2 z^2+10 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -8 a^2-8 a^{-2} +4 a z^9+11 z^9 a^{-1} -20 z^7 a^{-1} -3 a z^5+9 z^5 a^{-1} -a z^3-z^3 a^{-1} +4 a z+4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+6 z^8-10 z^6-7 z^4+22 z^2+2 z^{-2} -11 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



