L11n331
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n331's Link Presentations]
| Planar diagram presentation | X6172 X5,14,6,15 X8493 X2,16,3,15 X16,7,17,8 X13,18,14,19 X9,13,10,22 X11,21,12,20 X19,5,20,12 X21,11,22,10 X4,17,1,18 |
| Gauss code | {1, -4, 3, -11}, {-2, -1, 5, -3, -7, 10, -8, 9}, {-6, 2, 4, -5, 11, 6, -9, 8, -10, 7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2)+t(3))}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-5} +q^4+2 q^{-4} -q^3-3 q^{-3} +4 q^2+5 q^{-2} -4 q-5 q^{-1} +6 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^4 \left(-z^2\right)+ a^{-4} z^{-2} -a^4+ a^{-4} +a^2 z^4+2 a^2 z^2-2 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2-3 a^{-2} +z^4+z^2+ z^{-2} +1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a z^9+z^9 a^{-1} +2 a^2 z^8+z^8 a^{-2} +3 z^8+2 a^3 z^7-3 a z^7-5 z^7 a^{-1} +2 a^4 z^6-7 a^2 z^6-6 z^6 a^{-2} -15 z^6+a^5 z^5-5 a^3 z^5+2 a z^5+9 z^5 a^{-1} +z^5 a^{-3} -6 a^4 z^4+8 a^2 z^4+17 z^4 a^{-2} +z^4 a^{-4} +30 z^4-3 a^5 z^3+a^3 z^3+5 a z^3-z^3 a^{-3} +3 a^4 z^2-2 a^2 z^2-20 z^2 a^{-2} -4 z^2 a^{-4} -21 z^2+a^5 z+a^3 z-3 a z-6 z a^{-1} -3 z a^{-3} -a^4+9 a^{-2} +4 a^{-4} +7+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



