L10a172
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a172's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X20,15,17,16 X14,8,15,7 X10,12,5,11 X16,19,11,20 X8,18,9,17 X18,10,19,9 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {7, -8, 6, -3}, {9, -1, 4, -7, 8, -5}, {5, -2, 10, -4, 3, -6} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(1) t(4)^2 t(3)^2+t(1) t(2) t(4)^2 t(3)^2-t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2-t(2) t(3)^2-t(1) t(2) t(4) t(3)^2+2 t(2) t(4) t(3)^2-t(4) t(3)^2+2 t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)-t(4)^2 t(3)-t(1) t(2) t(3)+2 t(2) t(3)-t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1) t(4)^2-t(1)+t(1) t(2)-t(2)+2 t(1) t(4)-t(1) t(2) t(4)-t(4)+1}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 8 q^{9/2}-11 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-11 q^{3/2}+\frac{2}{q^{3/2}}-q^{15/2}+3 q^{13/2}-6 q^{11/2}+6 \sqrt{q}-\frac{6}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-5} -3 z^3 a^{-5} - a^{-5} z^{-3} -3 z a^{-5} -2 a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +3 a^{-3} z^{-3} +11 z a^{-3} +7 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +a z^{-3} -3 a^{-1} z^{-3} +3 a z-11 z a^{-1} +3 a z^{-1} -8 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -5 z^3 a^{-7} +2 z a^{-7} +8 z^6 a^{-6} -10 z^4 a^{-6} +2 z^2 a^{-6} +9 z^7 a^{-5} -20 z^5 a^{-5} +17 z^3 a^{-5} - a^{-5} z^{-3} -12 z a^{-5} +5 a^{-5} z^{-1} +5 z^8 a^{-4} -4 z^6 a^{-4} -17 z^4 a^{-4} +20 z^2 a^{-4} +3 a^{-4} z^{-2} -10 a^{-4} +z^9 a^{-3} +12 z^7 a^{-3} -51 z^5 a^{-3} +61 z^3 a^{-3} -3 a^{-3} z^{-3} -35 z a^{-3} +12 a^{-3} z^{-1} +7 z^8 a^{-2} -19 z^6 a^{-2} +26 z^2 a^{-2} +6 a^{-2} z^{-2} -19 a^{-2} +z^9 a^{-1} +a z^7+4 z^7 a^{-1} -5 a z^5-30 z^5 a^{-1} +10 a z^3+48 z^3 a^{-1} -a z^{-3} -3 a^{-1} z^{-3} -10 a z-31 z a^{-1} +5 a z^{-1} +12 a^{-1} z^{-1} +2 z^8-7 z^6+4 z^4+8 z^2+3 z^{-2} -10 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



