L10a41
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a41's Link Presentations]
Planar diagram presentation | X6172 X12,4,13,3 X16,10,17,9 X14,12,15,11 X10,16,11,15 X20,17,5,18 X18,7,19,8 X8,19,9,20 X2536 X4,14,1,13 |
Gauss code | {1, -9, 2, -10}, {9, -1, 7, -8, 3, -5, 4, -2, 10, -4, 5, -3, 6, -7, 8, -6} |
A Braid Representative | |||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^5-3 a^5 z^3+2 a^5 z-a^5 z^{-1} +2 a^4 z^6+z^6 a^{-4} +a^4 z^4-3 z^4 a^{-4} -5 a^4 z^2+2 z^2 a^{-4} +3 a^4+2 a^3 z^7+3 z^7 a^{-3} +2 a^3 z^5-10 z^5 a^{-3} -7 a^3 z^3+8 z^3 a^{-3} +7 a^3 z-2 z a^{-3} -3 a^3 z^{-1} +2 a^2 z^8+3 z^8 a^{-2} -a^2 z^6-8 z^6 a^{-2} +2 a^2 z^4+3 z^4 a^{-2} -4 a^2 z^2+z^2 a^{-2} +3 a^2+a z^9+z^9 a^{-1} +2 a z^7+3 z^7 a^{-1} -5 a z^5-15 z^5 a^{-1} +12 z^3 a^{-1} +5 a z-2 z a^{-1} -2 a z^{-1} +5 z^8-12 z^6+8 z^4-2 z^2} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|