L11n47
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n47's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X5,14,6,15 X3849 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X17,2,18,3 |
| Gauss code | {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, -11, -2, 3, 8, -10, 9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^5-2 u v^4+2 u v^3-2 u v^2+u v+v^4-2 v^3+2 v^2-2 v+2}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{2}{q^{25/2}}-\frac{3}{q^{23/2}}+\frac{5}{q^{21/2}}-\frac{6}{q^{19/2}}+\frac{5}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{3}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{13} (-z)-2 a^{13} z^{-1} +a^{11} z^5+5 a^{11} z^3+8 a^{11} z+4 a^{11} z^{-1} -a^9 z^7-5 a^9 z^5-7 a^9 z^3-3 a^9 z-a^9 z^{-1} -a^7 z^7-6 a^7 z^5-11 a^7 z^3-6 a^7 z-a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -3 z^2 a^{16}+2 a^{16}-z^5 a^{15}-z^3 a^{15}-z a^{15}-2 z^6 a^{14}+2 z^4 a^{14}-3 z^2 a^{14}+a^{14}-2 z^7 a^{13}+z^5 a^{13}+6 z^3 a^{13}-8 z a^{13}+2 a^{13} z^{-1} -2 z^8 a^{12}+6 z^6 a^{12}-12 z^4 a^{12}+17 z^2 a^{12}-6 a^{12}-z^9 a^{11}+3 z^7 a^{11}-9 z^5 a^{11}+22 z^3 a^{11}-16 z a^{11}+4 a^{11} z^{-1} -3 z^8 a^{10}+12 z^6 a^{10}-17 z^4 a^{10}+15 z^2 a^{10}-5 a^{10}-z^9 a^9+4 z^7 a^9-5 z^5 a^9+4 z^3 a^9-3 z a^9+a^9 z^{-1} -z^8 a^8+4 z^6 a^8-3 z^4 a^8-2 z^2 a^8+a^8-z^7 a^7+6 z^5 a^7-11 z^3 a^7+6 z a^7-a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



