L11a69
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a69's Link Presentations]
Planar diagram presentation | X6172 X12,4,13,3 X14,10,15,9 X22,20,5,19 X20,11,21,12 X10,21,11,22 X18,15,19,16 X16,7,17,8 X8,17,9,18 X2536 X4,14,1,13 |
Gauss code | {1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 5, -2, 11, -3, 7, -8, 9, -7, 4, -5, 6, -4} |
A Braid Representative | ||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 (-z)-a^7 z^{-1} +3 a^5 z^3+5 a^5 z+3 a^5 z^{-1} -3 a^3 z^5-8 a^3 z^3-8 a^3 z-3 a^3 z^{-1} +a z^7+4 a z^5-z^5 a^{-1} +8 a z^3-2 z^3 a^{-1} +6 a z+2 a z^{-1} -2 z a^{-1} - a^{-1} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^{10}-a^2 z^{10}-4 a^5 z^9-9 a^3 z^9-5 a z^9-5 a^6 z^8-16 a^4 z^8-20 a^2 z^8-9 z^8-3 a^7 z^7-2 a^5 z^7-9 a z^7-8 z^7 a^{-1} -a^8 z^6+9 a^6 z^6+41 a^4 z^6+47 a^2 z^6-4 z^6 a^{-2} +12 z^6+7 a^7 z^5+21 a^5 z^5+36 a^3 z^5+36 a z^5+13 z^5 a^{-1} -z^5 a^{-3} +3 a^8 z^4-3 a^6 z^4-32 a^4 z^4-37 a^2 z^4+5 z^4 a^{-2} -6 z^4-6 a^7 z^3-22 a^5 z^3-41 a^3 z^3-35 a z^3-9 z^3 a^{-1} +z^3 a^{-3} -3 a^8 z^2-2 a^6 z^2+9 a^4 z^2+11 a^2 z^2-z^2 a^{-2} +2 z^2+3 a^7 z+12 a^5 z+18 a^3 z+13 a z+4 z a^{-1} +a^8+2 a^6-2 a^2-a^7 z^{-1} -3 a^5 z^{-1} -3 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|