L11n425
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n425's Link Presentations]
Planar diagram presentation | X8192 X16,8,17,7 X5,14,6,15 X3,10,4,11 X13,4,14,5 X17,2,18,3 X9,19,10,18 X21,7,22,12 X11,13,12,22 X20,16,21,15 X6,19,1,20 |
Gauss code | {1, 6, -4, 5, -3, -11}, {2, -1, -7, 4, -9, 8}, {-5, 3, 10, -2, -6, 7, 11, -10, -8, 9} |
A Braid Representative | |||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 0 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|