L11n7
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n7's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X3849 X5,11,6,10 X11,20,12,21 X19,22,20,5 X13,19,14,18 X21,12,22,13 X15,2,16,3 |
| Gauss code | {1, 11, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 10, -9, 4, -11, -2, 3, 9, -8, 7, -10, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-4 t(1) t(2)^4+4 t(1) t(2)^3-2 t(2)^3-2 t(1) t(2)^2+4 t(2)^2-4 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{7}{q^{11/2}}-\frac{7}{q^{13/2}}+\frac{5}{q^{15/2}}-\frac{4}{q^{17/2}}+\frac{2}{q^{19/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{11} z^{-1} +z^3 a^9+4 z a^9+3 a^9 z^{-1} -2 z^5 a^7-8 z^3 a^7-8 z a^7-3 a^7 z^{-1} +z^7 a^5+5 z^5 a^5+8 z^3 a^5+6 z a^5+2 a^5 z^{-1} -z^5 a^3-4 z^3 a^3-4 z a^3-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -3 z^2 a^{12}+a^{12}-z^5 a^{11}-3 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -3 z^6 a^{10}+5 z^4 a^{10}-6 z^2 a^{10}+2 a^{10}-4 z^7 a^9+11 z^5 a^9-15 z^3 a^9+12 z a^9-3 a^9 z^{-1} -3 z^8 a^8+7 z^6 a^8-4 z^4 a^8+3 z^2 a^8-z^9 a^7-3 z^7 a^7+21 z^5 a^7-27 z^3 a^7+15 z a^7-3 a^7 z^{-1} -5 z^8 a^6+19 z^6 a^6-20 z^4 a^6+9 z^2 a^6-2 a^6-z^9 a^5+14 z^5 a^5-23 z^3 a^5+11 z a^5-2 a^5 z^{-1} -2 z^8 a^4+9 z^6 a^4-11 z^4 a^4+3 z^2 a^4-z^7 a^3+5 z^5 a^3-8 z^3 a^3+5 z a^3-a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



