L10n47

From Knot Atlas
Revision as of 18:16, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L10n46.gif

L10n46

L10n48.gif

L10n48

L10n47.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n47 at Knotilus!


Link Presentations

[edit Notes on L10n47's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X6718 X20,14,7,13 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X14,20,15,19 X17,2,18,3
Gauss code {1, 10, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, 4, -9, 7, -8, -10, 2, 9, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n47 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        11
2       2 -2
0      21 1
-2     43  -1
-4    21   1
-6   24    2
-8  22     0
-10  2      2
-1212       -1
-141        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n46.gif

L10n46

L10n48.gif

L10n48