L11a324

From Knot Atlas
Revision as of 18:26, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a323.gif

L11a323

L11a325.gif

L11a325

L11a324.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a324 at Knotilus!


Link Presentations

[edit Notes on L11a324's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X16,10,17,9 X6,13,7,14 X14,7,15,8 X8,15,1,16 X22,18,9,17 X4,20,5,19 X20,6,21,5 X18,22,19,21
Gauss code {1, -2, 3, -9, 10, -5, 6, -7}, {4, -1, 2, -3, 5, -6, 7, -4, 8, -11, 9, -10, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a324 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
8           1-1
6          1 1
4         31 -2
2        41  3
0       33   0
-2      64    2
-4     44     0
-6    45      -1
-8   24       2
-10  24        -2
-12 13         2
-14 1          -1
-161           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a323.gif

L11a323

L11a325.gif

L11a325