L11n17
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n17's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X15,1,16,4 X5,12,6,13 X3849 X9,16,10,17 X11,20,12,21 X17,22,18,5 X21,18,22,19 X19,10,20,11 X2,14,3,13 |
| Gauss code | {1, -11, -5, 3}, {-4, -1, 2, 5, -6, 10, -7, 4, 11, -2, -3, 6, -8, 9, -10, 7, -9, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 (t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{7}{q^{9/2}}-\frac{7}{q^{7/2}}+\frac{3}{q^{5/2}}-\frac{2}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{8}{q^{13/2}}-\frac{8}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^9-2 z a^9-a^9 z^{-1} +z^5 a^7+3 z^3 a^7+4 z a^7+a^7 z^{-1} +z^5 a^5+2 z^3 a^5+2 z a^5+2 a^5 z^{-1} -2 z^3 a^3-4 z a^3-2 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+4 z^4 a^{12}-4 z^2 a^{12}+a^{12}-2 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+z a^{11}-2 z^8 a^{10}+5 z^6 a^{10}-z^4 a^{10}-z^2 a^{10}-z^9 a^9+5 z^5 a^9-3 z^3 a^9+a^9 z^{-1} -4 z^8 a^8+11 z^6 a^8-13 z^4 a^8+11 z^2 a^8-3 a^8-z^9 a^7+z^5 a^7-2 z a^7+a^7 z^{-1} -2 z^8 a^6+4 z^6 a^6-8 z^4 a^6+5 z^2 a^6-2 z^7 a^5+3 z^5 a^5-6 z^3 a^5+4 z a^5-2 a^5 z^{-1} -z^6 a^4-3 z^2 a^4+3 a^4-3 z^3 a^3+5 z a^3-2 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



