L10a145
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a145's Link Presentations]
Planar diagram presentation | X6172 X14,4,15,3 X8,18,9,17 X16,8,17,7 X18,10,19,9 X20,12,13,11 X12,14,5,13 X10,20,11,19 X2536 X4,16,1,15 |
Gauss code | {1, -9, 2, -10}, {9, -1, 4, -3, 5, -8, 6, -7}, {7, -2, 10, -4, 3, -5, 8, -6} |
A Braid Representative | ||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(3)^3 t(2)^3-t(3)^3 t(2)^3+t(3)^2 t(2)^3-t(1) t(3)^3 t(2)^2+t(1) t(3)^2 t(2)^2-t(3)^2 t(2)^2+t(3) t(2)^2-t(1) t(3)^2 t(2)+t(1) t(3) t(2)-t(3) t(2)+t(2)+t(1)-t(1) t(3)-1}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}}} (db) |
Jones polynomial | (db) |
Signature | 6 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -17 z^4 a^{-6} +5 z^4 a^{-8} +11 z^2 a^{-4} -19 z^2 a^{-6} +7 z^2 a^{-8} +7 a^{-4} -11 a^{-6} +4 a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} } (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|