L11n260
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n260's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X18,12,19,11 X19,22,20,9 X15,20,16,21 X21,16,22,17 X12,18,13,17 X2536 X9,1,10,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, 5, -9, -4, 3, -7, 8, 9, -5, -6, 7, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-t(2) t(3)^3+t(3)^3+2 t(1) t(3)^2-2 t(1) t(2) t(3)^2+2 t(2) t(3)^2-3 t(3)^2-2 t(1) t(3)+3 t(1) t(2) t(3)-2 t(2) t(3)+2 t(3)+t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^4-4 q^3+8 q^2-8 q+10-8 q^{-1} +7 q^{-2} -4 q^{-3} + q^{-4} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{-4} z^{-2} + a^{-4} +a^2 z^4+z^4 a^{-2} +a^2 z^2-2 a^{-2} z^{-2} -3 a^{-2} -z^6-3 z^4-2 z^2+ z^{-2} +2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^4 z^4+3 z^4 a^{-4} -5 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +z^7 a^{-3} +4 a^3 z^5+z^5 a^{-3} -3 a^3 z^3-3 z a^{-3} +2 a^{-3} z^{-1} +z^8 a^{-2} +7 a^2 z^6+3 z^6 a^{-2} -10 a^2 z^4-4 z^4 a^{-2} +3 a^2 z^2-3 z^2 a^{-2} -2 a^{-2} z^{-2} +5 a^{-2} +5 a z^7+6 z^7 a^{-1} -3 a z^5-6 z^5 a^{-1} -3 a z^3-3 z a^{-1} +2 a^{-1} z^{-1} +z^8+10 z^6-18 z^4+5 z^2- z^{-2} +3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



