L11n307
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n307's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X7,17,8,16 X9,21,10,20 X15,9,16,8 X19,5,20,10 X13,19,14,18 X17,11,18,22 X21,15,22,14 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -3, 5, -4, 6}, {-11, 2, -7, 9, -5, 3, -8, 7, -6, 4, -9, 8} |
| A Braid Representative | |||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-3 u v^2 w^2+3 u v^2 w-u v^2-u v w^3+3 u v w^2-2 u v w+u w^3-u w^2+v^2 w^2-v^2 w+2 v w^3-3 v w^2+v w+w^4-3 w^3+3 w^2}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{10}+3 q^9-6 q^8+8 q^7-9 q^6+11 q^5-8 q^4+8 q^3-4 q^2+2 q }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-4} -3 z^4 a^{-6} +2 z^2 a^{-2} +2 z^2 a^{-4} -9 z^2 a^{-6} +4 z^2 a^{-8} + a^{-2} +5 a^{-4} -12 a^{-6} +7 a^{-8} - a^{-10} +2 a^{-4} z^{-2} -5 a^{-6} z^{-2} +4 a^{-8} z^{-2} - a^{-10} z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{-11} -4 z^5 a^{-11} +6 z^3 a^{-11} -4 z a^{-11} + a^{-11} z^{-1} +3 z^8 a^{-10} -12 z^6 a^{-10} +14 z^4 a^{-10} -6 z^2 a^{-10} - a^{-10} z^{-2} +3 a^{-10} +2 z^9 a^{-9} -z^7 a^{-9} -21 z^5 a^{-9} +36 z^3 a^{-9} -19 z a^{-9} +5 a^{-9} z^{-1} +10 z^8 a^{-8} -39 z^6 a^{-8} +48 z^4 a^{-8} -32 z^2 a^{-8} -4 a^{-8} z^{-2} +15 a^{-8} +2 z^9 a^{-7} +5 z^7 a^{-7} -38 z^5 a^{-7} +52 z^3 a^{-7} -33 z a^{-7} +9 a^{-7} z^{-1} +7 z^8 a^{-6} -24 z^6 a^{-6} +35 z^4 a^{-6} -37 z^2 a^{-6} -5 a^{-6} z^{-2} +20 a^{-6} +7 z^7 a^{-5} -20 z^5 a^{-5} +25 z^3 a^{-5} -18 z a^{-5} +5 a^{-5} z^{-1} +3 z^6 a^{-4} +z^4 a^{-4} -8 z^2 a^{-4} -2 a^{-4} z^{-2} +8 a^{-4} +z^5 a^{-3} +3 z^3 a^{-3} +3 z^2 a^{-2} - a^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



