L11n281
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n281's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X9,18,10,19 X22,17,11,18 X20,11,21,12 X16,21,17,22 X4,15,1,16 X19,10,20,5 |
| Gauss code | {1, -4, 3, -10}, {-2, -1, 5, -3, -6, 11}, {8, 2, 4, -5, 10, -9, 7, 6, -11, -8, 9, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) (w-1) \left(w^2-w+1\right)}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^{-2} -3 q^{-3} +8 q^{-4} -7 q^{-5} +9 q^{-6} -8 q^{-7} +6 q^{-8} -4 q^{-9} + q^{-10} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{10} z^{-2} +a^8 z^4+2 a^8 z^2+4 a^8 z^{-2} +4 a^8-a^6 z^6-4 a^6 z^4-8 a^6 z^2-5 a^6 z^{-2} -10 a^6+2 a^4 z^4+6 a^4 z^2+2 a^4 z^{-2} +6 a^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{12}+4 z^5 a^{11}-4 z^3 a^{11}+a^{11} z^{-1} +6 z^6 a^{10}-8 z^4 a^{10}+2 z^2 a^{10}-a^{10} z^{-2} +4 z^7 a^9-z^5 a^9-3 z^3 a^9-5 z a^9+5 a^9 z^{-1} +z^8 a^8+7 z^6 a^8-11 z^4 a^8+z^2 a^8-4 a^8 z^{-2} +5 a^8+5 z^7 a^7-6 z^5 a^7+7 z^3 a^7-15 z a^7+9 a^7 z^{-1} +z^8 a^6+z^6 a^6+z^4 a^6-8 z^2 a^6-5 a^6 z^{-2} +10 a^6+z^7 a^5-z^5 a^5+6 z^3 a^5-10 z a^5+5 a^5 z^{-1} +3 z^4 a^4-7 z^2 a^4-2 a^4 z^{-2} +6 a^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



