L11n364
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n364's Link Presentations]
Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X15,17,16,22 X9,18,10,19 X17,8,18,9 X13,21,14,20 X21,15,22,14 X19,5,20,16 X2536 X4,12,1,11 |
Gauss code | {1, -10, 2, -11}, {-6, 5, -9, 7, -8, 4}, {10, -1, 3, 6, -5, -2, 11, -3, -7, 8, -4, 9} |
A Braid Representative | |||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (w-1) \left(v^2 w-2 v w+2 v-1\right)}{\sqrt{u} v w}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+3 q^7-5 q^6+7 q^5-8 q^4+9 q^3-6 q^2+6 q+ q^{-1} -2} (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -7 z^4 a^{-8} +2 z^2 a^{-8} +4 z^7 a^{-7} -10 z^5 a^{-7} +6 z^3 a^{-7} -z a^{-7} +3 z^8 a^{-6} -7 z^6 a^{-6} +7 z^4 a^{-6} -5 z^2 a^{-6} +2 a^{-6} +z^9 a^{-5} +z^7 a^{-5} -6 z^5 a^{-5} +9 z^3 a^{-5} -3 z a^{-5} +4 z^8 a^{-4} -14 z^6 a^{-4} +27 z^4 a^{-4} -21 z^2 a^{-4} - a^{-4} z^{-2} +7 a^{-4} +z^9 a^{-3} -3 z^7 a^{-3} +7 z^5 a^{-3} -z^3 a^{-3} -4 z a^{-3} +2 a^{-3} z^{-1} +z^8 a^{-2} -4 z^6 a^{-2} +14 z^4 a^{-2} -17 z^2 a^{-2} -2 a^{-2} z^{-2} +7 a^{-2} +2 z^5 a^{-1} -2 z^3 a^{-1} -2 z a^{-1} +2 a^{-1} z^{-1} +z^4-3 z^2- z^{-2} +3} (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|