L11a365
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a365's Link Presentations]
Planar diagram presentation | X12,1,13,2 X2,13,3,14 X14,3,15,4 X16,5,17,6 X6,11,7,12 X18,8,19,7 X22,18,11,17 X20,10,21,9 X8,20,9,19 X10,22,1,21 X4,15,5,16 |
Gauss code | {1, -2, 3, -11, 4, -5, 6, -9, 8, -10}, {5, -1, 2, -3, 11, -4, 7, -6, 9, -8, 10, -7} |
A Braid Representative | ||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|