L11n319
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n319's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,5,15,6 X11,21,12,20 X17,11,18,22 X21,17,22,16 X10,13,5,14 X8,20,9,19 X18,8,19,7 X2,9,3,10 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {3, -1, 9, -8, 10, -7}, {-4, -2, 7, -3, 11, 6, -5, -9, 8, 4, -6, 5} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w^4-u v^2 w^3-u v w^4+3 u v w^3-2 u v w^2+2 u v w-u v-u w^3+u w^2-u w+u-v^2 w^4+v^2 w^3-v^2 w^2+v^2 w+v w^4-2 v w^3+2 v w^2-3 v w+v+w-1}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^6+4 q^5-7 q^4+10 q^3-9 q^2+11 q-7+6 q^{-1} -3 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +z^6-13 z^4 a^{-2} +5 z^4 a^{-4} +4 z^4-14 z^2 a^{-2} +9 z^2 a^{-4} -z^2 a^{-6} +5 z^2-10 a^{-2} +8 a^{-4} -2 a^{-6} +4-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 z^9 a^{-1} +2 z^9 a^{-3} +9 z^8 a^{-2} +5 z^8 a^{-4} +4 z^8+3 a z^7-z^7 a^{-1} +4 z^7 a^{-5} +a^2 z^6-34 z^6 a^{-2} -19 z^6 a^{-4} +z^6 a^{-6} -13 z^6-9 a z^5-11 z^5 a^{-1} -15 z^5 a^{-3} -13 z^5 a^{-5} -3 a^2 z^4+50 z^4 a^{-2} +35 z^4 a^{-4} +2 z^4 a^{-6} +14 z^4+5 a z^3+14 z^3 a^{-1} +31 z^3 a^{-3} +25 z^3 a^{-5} +3 z^3 a^{-7} +2 a^2 z^2-37 z^2 a^{-2} -26 z^2 a^{-4} -4 z^2 a^{-6} -13 z^2-11 z a^{-1} -24 z a^{-3} -18 z a^{-5} -5 z a^{-7} +15 a^{-2} +12 a^{-4} +3 a^{-6} +7+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



