L11n242
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L11n242's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X16,8,17,7 X10,5,1,6 X6374 X4,9,5,10 X13,18,14,19 X19,22,20,11 X15,21,16,20 X21,15,22,14 X2,11,3,12 X8,18,9,17 | 
| Gauss code | {1, -10, 4, -5, 3, -4, 2, -11, 5, -3}, {10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7} | 
| A Braid Representative | ||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -1 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



