L10n12

From Knot Atlas
Revision as of 02:43, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n11.gif

L10n11

L10n13.gif

L10n13

L10n12.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n12 at Knotilus!


Link Presentations

[edit Notes on L10n12's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X8493 X9,16,10,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X2,14,3,13
Gauss code {1, -10, 5, -3}, {-4, -1, 2, -5, -6, 9, -8, 4, 10, -2, 3, 6, -7, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n12 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -2 q^{3/2}+3 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{7}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^5 z^3+a^5 z+a^5 z^{-1} -a^3 z^5-3 a^3 z^3-5 a^3 z-3 a^3 z^{-1} +3 a z^3+6 a z+4 a z^{-1} -2 z a^{-1} -2 a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -a^4 z^8-a^2 z^8-3 a^5 z^7-5 a^3 z^7-2 a z^7-3 a^6 z^6-4 a^4 z^6-2 a^2 z^6-z^6-a^7 z^5+5 a^5 z^5+11 a^3 z^5+5 a z^5+7 a^6 z^4+14 a^4 z^4+7 a^2 z^4+2 a^7 z^3+a^5 z^3-12 a^3 z^3-14 a z^3-3 z^3 a^{-1} -3 a^6 z^2-11 a^4 z^2-10 a^2 z^2-2 z^2-a^7 z+9 a^3 z+13 a z+5 z a^{-1} +a^6+3 a^4+3 a^2+2-a^5 z^{-1} -3 a^3 z^{-1} -4 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        22
2       1 -1
0      52 3
-2     43  -1
-4    33   0
-6   34    1
-8  23     -1
-10 13      2
-12 2       -2
-141        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n11.gif

L10n11

L10n13.gif

L10n13