L11n207

From Knot Atlas
Revision as of 02:44, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n206.gif

L11n206

L11n208.gif

L11n208

L11n207.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n207 at Knotilus!


Link Presentations

[edit Notes on L11n207's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X17,22,18,9 X19,5,20,4 X21,6,22,7 X7,17,8,16 X8,9,1,10 X13,18,14,19 X15,21,16,20
Gauss code {1, -2, 3, 6, -4, 7, -8, -9}, {9, -1, 2, -3, -10, 4, -11, 8, -5, 10, -6, 11, -7, 5}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n207 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        3 3
-4       42 -2
-6      62  4
-8     44   0
-10    66    0
-12   45     1
-14  25      -3
-16 14       3
-18 2        -2
-201         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n206.gif

L11n206

L11n208.gif

L11n208