L10n1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X13,2,14,3 |
| Gauss code | {1, 10, -5, -3}, {-4, -1, 2, 5, -9, 4, -6, 8, -10, -2, 3, 9, -7, 6, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u v^5+2 u v^4-2 u v^3-2 v^2+2 v-1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{2}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{5/2}}+q^{3/2}-\frac{3}{q^{3/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7-a^7 z^{-1} +z^5 a^5+5 z^3 a^5+7 z a^5+4 a^5 z^{-1} -z^7 a^3-6 z^5 a^3-12 z^3 a^3-11 z a^3-4 a^3 z^{-1} +z^5 a+4 z^3 a+3 z a+a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^2-a^8+2 a^7 z^3-3 a^7 z+a^7 z^{-1} +a^6 z^6-4 a^6 z^4+8 a^6 z^2-4 a^6+2 a^5 z^7-10 a^5 z^5+19 a^5 z^3-15 a^5 z+4 a^5 z^{-1} +a^4 z^8-2 a^4 z^6-6 a^4 z^4+15 a^4 z^2-7 a^4+4 a^3 z^7-19 a^3 z^5+27 a^3 z^3-16 a^3 z+4 a^3 z^{-1} +a^2 z^8-2 a^2 z^6-6 a^2 z^4+11 a^2 z^2-4 a^2+2 a z^7-9 a z^5+10 a z^3-4 a z+a z^{-1} +z^6-4 z^4+3 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



