L11a10
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a10's Link Presentations]
Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X12,6,13,5 X8493 X16,10,17,9 X22,14,5,13 X10,16,11,15 X14,22,15,21 X20,12,21,11 X2,18,3,17 |
Gauss code | {1, -11, 5, -3}, {4, -1, 2, -5, 6, -8, 10, -4, 7, -9, 8, -6, 11, -2, 3, -10, 9, -7} |
A Braid Representative | ||||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) \left(4 t(2)^2-7 t(2)+4\right)}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^{-7} + a^{-7} z^{-1} +z^5 a^{-5} -2 z a^{-5} -2 a^{-5} z^{-1} +2 z^5 a^{-3} +3 z^3 a^{-3} +2 z a^{-3} +z^5 a^{-1} -a z^3+ a^{-1} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{-9} -3 z^5 a^{-9} +2 z^3 a^{-9} +4 z^8 a^{-8} -15 z^6 a^{-8} +16 z^4 a^{-8} -3 z^2 a^{-8} -2 a^{-8} +5 z^9 a^{-7} -16 z^7 a^{-7} +13 z^5 a^{-7} -2 z^3 a^{-7} + a^{-7} z^{-1} +2 z^{10} a^{-6} +5 z^8 a^{-6} -32 z^6 a^{-6} +32 z^4 a^{-6} -3 z^2 a^{-6} -5 a^{-6} +11 z^9 a^{-5} -27 z^7 a^{-5} +11 z^5 a^{-5} +5 z^3 a^{-5} -3 z a^{-5} +2 a^{-5} z^{-1} +2 z^{10} a^{-4} +11 z^8 a^{-4} -37 z^6 a^{-4} +25 z^4 a^{-4} -z^2 a^{-4} -3 a^{-4} +6 z^9 a^{-3} +z^7 a^{-3} -24 z^5 a^{-3} +19 z^3 a^{-3} -4 z a^{-3} +10 z^8 a^{-2} -12 z^6 a^{-2} +a^2 z^4+z^4 a^{-2} + a^{-2} +11 z^7 a^{-1} +4 a z^5-15 z^5 a^{-1} -2 a z^3+8 z^3 a^{-1} -z a^{-1} - a^{-1} z^{-1} +8 z^6-7 z^4+z^2} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|