Data:10 64/Integral Khovanov Homology
From Knot Atlas
Jump to navigationJump to search
| [math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] | [math]\displaystyle{ i=1 }[/math] | [math]\displaystyle{ i=3 }[/math] |
| [math]\displaystyle{ r=-4 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | |
| [math]\displaystyle{ r=-3 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=-2 }[/math] | [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=-1 }[/math] | [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2^3 }[/math] | [math]\displaystyle{ {\mathbb Z}^3 }[/math] |
| [math]\displaystyle{ r=0 }[/math] | [math]\displaystyle{ {\mathbb Z}^5\oplus{\mathbb Z}_2^3 }[/math] | [math]\displaystyle{ {\mathbb Z}^4 }[/math] |
| [math]\displaystyle{ r=1 }[/math] | [math]\displaystyle{ {\mathbb Z}^4\oplus{\mathbb Z}_2^4 }[/math] | [math]\displaystyle{ {\mathbb Z}^4 }[/math] |
| [math]\displaystyle{ r=2 }[/math] | [math]\displaystyle{ {\mathbb Z}^4\oplus{\mathbb Z}_2^4 }[/math] | [math]\displaystyle{ {\mathbb Z}^4 }[/math] |
| [math]\displaystyle{ r=3 }[/math] | [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2^4 }[/math] | [math]\displaystyle{ {\mathbb Z}^4 }[/math] |
| [math]\displaystyle{ r=4 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^3 }[/math] | [math]\displaystyle{ {\mathbb Z}^3 }[/math] |
| [math]\displaystyle{ r=5 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=6 }[/math] | [math]\displaystyle{ {\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |