The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
q − 1 + 2 q − 2 q 2 + 2 q 3 − 2 q 4 + 1 q 5 {\displaystyle q-1+{\frac {2}{q}}-{\frac {2}{q^{2}}}+{\frac {2}{q^{3}}}-{\frac {2}{q^{4}}}+{\frac {1}{q^{5}}}}
Again:
In[1]:= Jones[Knot[6, 1]][q]
Jones[Knot[6, 1]][q]
2 − 1 q + 1 q 2 − 2 q 3 + 1 q 4 − 1 q 5 + 1 q 6 {\displaystyle 2-{\frac {1}{q}}+{\frac {1}{q^{2}}}-{\frac {2}{q^{3}}}+{\frac {1}{q^{4}}}-{\frac {1}{q^{5}}}+{\frac {1}{q^{6}}}}
In[2]:= Jones[Knot[6, 1]][q]