L11n382
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n382's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X22,18,19,17 X20,12,21,11 X12,20,13,19 X18,22,5,21 X9,16,10,17 X2,14,3,13 |
| Gauss code | {1, -11, 5, -3}, {8, -7, 9, -6}, {-4, -1, 2, -5, -10, 4, 7, -8, 11, -2, 3, 10, 6, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(3)-1)^2 (t(2)+t(3))}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^4-2 q^3-2 q^{-3} +6 q^2+4 q^{-2} -5 q-5 q^{-1} +6 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ 2 a^{-4} z^{-2} +2 a^{-4} -2 a^2 z^2-4 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} -2 a^2-8 a^{-2} +2 z^4+6 z^2+4 z^{-2} +8 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 z^4 a^{-4} -9 z^2 a^{-4} -2 a^{-4} z^{-2} +8 a^{-4} +z^7 a^{-3} -3 z^5 a^{-3} +3 a^3 z^3+9 z^3 a^{-3} -3 a^3 z-13 z a^{-3} +a^3 z^{-1} +5 a^{-3} z^{-1} +z^8 a^{-2} +a^2 z^6-3 z^6 a^{-2} +2 a^2 z^4+11 z^4 a^{-2} -4 a^2 z^2-20 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} +2 a^2+16 a^{-2} +2 a z^7+3 z^7 a^{-1} -5 a z^5-8 z^5 a^{-1} +13 a z^3+19 z^3 a^{-1} -14 a z-24 z a^{-1} +5 a z^{-1} +9 a^{-1} z^{-1} +z^8-2 z^6+10 z^4-15 z^2-4 z^{-2} +11 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



