L11n334
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n334's Link Presentations]
| Planar diagram presentation | X6172 X11,16,12,17 X8493 X2,18,3,17 X5,14,6,15 X18,7,19,8 X15,12,16,5 X13,20,14,21 X9,13,10,22 X21,11,22,10 X4,19,1,20 |
| Gauss code | {1, -4, 3, -11}, {-5, -1, 6, -3, -9, 10, -2, 7}, {-8, 5, -7, 2, 4, -6, 11, 8, -10, 9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ 0 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^3-2 q^2+2 q-1+2 q^{-1} + q^{-2} +2 q^{-4} -2 q^{-5} +2 q^{-6} - q^{-7} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^6-a^6+z^4 a^4+3 z^2 a^4+a^4 z^{-2} +2 a^4-2 a^2 z^{-2} -a^2-z^4-3 z^2+ z^{-2} -1+z^2 a^{-2} + a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^7-5 a^7 z^5+6 a^7 z^3-2 a^7 z+2 a^6 z^8-11 a^6 z^6+16 a^6 z^4-9 a^6 z^2+3 a^6+a^5 z^9-4 a^5 z^7-2 a^5 z^5+12 a^5 z^3-7 a^5 z+3 a^4 z^8-20 a^4 z^6+37 a^4 z^4-27 a^4 z^2-a^4 z^{-2} +9 a^4+a^3 z^9-5 a^3 z^7+13 a^3 z^3-10 a^3 z+2 a^3 z^{-1} +2 a^2 z^8-14 a^2 z^6+z^6 a^{-2} +26 a^2 z^4-4 z^4 a^{-2} -20 a^2 z^2+3 z^2 a^{-2} -2 a^2 z^{-2} +7 a^2- a^{-2} +2 a z^7+2 z^7 a^{-1} -12 a z^5-9 z^5 a^{-1} +15 a z^3+8 z^3 a^{-1} -6 a z-z a^{-1} +2 a z^{-1} +z^8-4 z^6+z^4+z^2- z^{-2} +1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



