L11a478
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a478's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X16,8,5,7 X18,9,19,10 X22,15,17,16 X14,19,15,20 X20,13,21,14 X12,21,13,22 X8,17,9,18 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {9, -4, 6, -7, 8, -5}, {10, -1, 3, -9, 4, -2, 11, -8, 7, -6, 5, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (w-1) \left(v^2 w^2-2 v^2 w+v w^3-3 v w^2+3 v w-v+2 w^2-w\right)}{\sqrt{u} v w^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} -2 q^{-8} +6 q^{-7} -10 q^{-6} +15 q^{-5} -17 q^{-4} +19 q^{-3} -q^2-16 q^{-2} +4 q+13 q^{-1} -8} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8+a^8 z^{-2} +2 a^8-2 z^4 a^6-5 z^2 a^6-2 a^6 z^{-2} -6 a^6+z^6 a^4+2 z^4 a^4+3 z^2 a^4+a^4 z^{-2} +3 a^4+z^6 a^2+2 z^4 a^2+2 z^2 a^2+a^2-z^4-z^2} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-4 z^4 a^{10}+5 z^2 a^{10}-2 a^{10}+2 z^7 a^9-5 z^5 a^9+2 z^3 a^9+z a^9+3 z^8 a^8-6 z^6 a^8+3 z^4 a^8-3 z^2 a^8-a^8 z^{-2} +3 a^8+3 z^9 a^7-4 z^7 a^7+4 z^3 a^7-7 z a^7+2 a^7 z^{-1} +z^{10} a^6+8 z^8 a^6-27 z^6 a^6+37 z^4 a^6-27 z^2 a^6-2 a^6 z^{-2} +11 a^6+7 z^9 a^5-9 z^7 a^5-2 z^5 a^5+12 z^3 a^5-9 z a^5+2 a^5 z^{-1} +z^{10} a^4+12 z^8 a^4-32 z^6 a^4+36 z^4 a^4-21 z^2 a^4-a^4 z^{-2} +7 a^4+4 z^9 a^3+4 z^7 a^3-19 z^5 a^3+15 z^3 a^3-2 z a^3+7 z^8 a^2-8 z^6 a^2+7 z^7 a-11 z^5 a+4 z^3 a-z a+4 z^6-6 z^4+2 z^2+z^5 a^{-1} -z^3 a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



