L11a333

From Knot Atlas
Revision as of 17:44, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a332.gif

L11a332

L11a334.gif

L11a334

L11a333.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a333 at Knotilus!


Link Presentations

[edit Notes on L11a333's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,5,21,6 X16,7,17,8 X8,9,1,10 X18,12,19,11 X6,15,7,16 X4,14,5,13 X22,18,9,17 X2,19,3,20 X14,22,15,21
Gauss code {1, -10, 2, -8, 3, -7, 4, -5}, {5, -1, 6, -2, 8, -11, 7, -4, 9, -6, 10, -3, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a333 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          3 3
6         61 -5
4        83  5
2       116   -5
0      128    4
-2     1112     1
-4    911      -2
-6   511       6
-8  49        -5
-10 16         5
-12 3          -3
-141           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a332.gif

L11a332

L11a334.gif

L11a334