L10a8
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a8's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X20,17,5,18 X18,13,19,14 X14,19,15,20 X8,16,9,15 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 4, -2, 10, -3, 6, -7, 8, -4, 5, -6, 7, -5} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^4-2 t(2)^3+4 t(2)^2-2 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{11/2}-3 q^{9/2}+7 q^{7/2}-11 q^{5/2}+12 q^{3/2}-14 \sqrt{q}+\frac{12}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-1} +2 a z^5-5 z^5 a^{-1} +z^5 a^{-3} -a^3 z^3+7 a z^3-11 z^3 a^{-1} +3 z^3 a^{-3} -2 a^3 z+9 a z-11 z a^{-1} +4 z a^{-3} -a^3 z^{-1} +4 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a z^9-z^9 a^{-1} -3 a^2 z^8-5 z^8 a^{-2} -8 z^8-3 a^3 z^7-10 a z^7-15 z^7 a^{-1} -8 z^7 a^{-3} -a^4 z^6+3 a^2 z^6-6 z^6 a^{-4} +10 z^6+9 a^3 z^5+35 a z^5+43 z^5 a^{-1} +14 z^5 a^{-3} -3 z^5 a^{-5} +3 a^4 z^4+9 a^2 z^4+14 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +12 z^4-9 a^3 z^3-35 a z^3-43 z^3 a^{-1} -15 z^3 a^{-3} +2 z^3 a^{-5} -3 a^4 z^2-12 a^2 z^2-15 z^2 a^{-2} -5 z^2 a^{-4} +z^2 a^{-6} -18 z^2+4 a^3 z+17 a z+21 z a^{-1} +8 z a^{-3} +a^4+4 a^2+4 a^{-2} + a^{-4} +7-a^3 z^{-1} -4 a z^{-1} -4 a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



