L10n45
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n45's Link Presentations]
| Planar diagram presentation | X8192 X18,9,19,10 X6718 X20,14,7,13 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X14,20,15,19 X17,2,18,3 |
| Gauss code | {1, 10, -6, 7, -5, -3}, {3, -1, 2, 6, -8, 5, 4, -9, -7, 8, -10, -2, 9, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^2 t(1)^2-t(2) t(1)^2-t(2) t(1)-t(2)+1}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+q^{3/2}-\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}}-\frac{1}{q^{7/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^{-1} -a^3 z^3-4 a^3 z-2 a^3 z^{-1} +a z^5+5 a z^3-z^3 a^{-1} +6 a z+2 a z^{-1} -3 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^5 z+a^5 z^{-1} -a^4 z^2+a^3 z^7-6 a^3 z^5+10 a^3 z^3-7 a^3 z+2 a^3 z^{-1} +a^2 z^8-6 a^2 z^6+10 a^2 z^4-6 a^2 z^2+a^2+2 a z^7+z^7 a^{-1} -12 a z^5-6 z^5 a^{-1} +20 a z^3+10 z^3 a^{-1} -11 a z-5 z a^{-1} +2 a z^{-1} + a^{-1} z^{-1} +z^8-6 z^6+10 z^4-5 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



