L11a243
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a243's Link Presentations]
| Planar diagram presentation | X8192 X12,4,13,3 X22,10,7,9 X16,11,17,12 X10,15,11,16 X2738 X20,17,21,18 X6,14,1,13 X4,20,5,19 X18,6,19,5 X14,21,15,22 |
| Gauss code | {1, -6, 2, -9, 10, -8}, {6, -1, 3, -5, 4, -2, 8, -11, 5, -4, 7, -10, 9, -7, 11, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{\left(v^2-v+1\right) (u v-u-2 v+1) (u v-2 u-v+1)}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{9}{q^{9/2}}-4 q^{7/2}+\frac{16}{q^{7/2}}+9 q^{5/2}-\frac{21}{q^{5/2}}-16 q^{3/2}+\frac{24}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{4}{q^{11/2}}+20 \sqrt{q}-\frac{25}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^3+a^5 z-2 a^3 z^5-4 a^3 z^3+z^3 a^{-3} -3 a^3 z+z a^{-3} -a^3 z^{-1} +a z^7+3 a z^5-2 z^5 a^{-1} +5 a z^3-4 z^3 a^{-1} +5 a z-3 z a^{-1} +3 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^5-a^7 z^3+4 a^6 z^6-5 a^6 z^4+2 a^6 z^2+8 a^5 z^7-11 a^5 z^5+6 a^5 z^3-a^5 z+10 a^4 z^8-13 a^4 z^6+z^6 a^{-4} +6 a^4 z^4-2 z^4 a^{-4} +z^2 a^{-4} -a^4+7 a^3 z^9+a^3 z^7+4 z^7 a^{-3} -16 a^3 z^5-9 z^5 a^{-3} +11 a^3 z^3+7 z^3 a^{-3} -2 a^3 z-2 z a^{-3} +a^3 z^{-1} +2 a^2 z^{10}+18 a^2 z^8+7 z^8 a^{-2} -41 a^2 z^6-14 z^6 a^{-2} +26 a^2 z^4+7 z^4 a^{-2} -3 a^2 z^2-3 a^2+13 a z^9+6 z^9 a^{-1} -14 a z^7-3 z^7 a^{-1} -10 a z^5-15 z^5 a^{-1} +12 a z^3+15 z^3 a^{-1} -5 a z-6 z a^{-1} +3 a z^{-1} +2 a^{-1} z^{-1} +2 z^{10}+15 z^8-39 z^6+24 z^4-2 z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



