L11a93
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a93's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X20,8,21,7 X22,17,5,18 X18,21,19,22 X14,10,15,9 X16,12,17,11 X10,16,11,15 X8,20,9,19 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 6, -8, 7, -2, 11, -6, 8, -7, 4, -5, 9, -3, 5, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) \left(v^4-4 v^3+3 v^2-4 v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{17/2}-3 q^{15/2}+7 q^{13/2}-12 q^{11/2}+15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-14 q^{3/2}+10 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} -2 z^5 a^{-5} -6 z^3 a^{-5} -7 z a^{-5} -4 a^{-5} z^{-1} +z^7 a^{-3} +4 z^5 a^{-3} +8 z^3 a^{-3} +11 z a^{-3} +6 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-7 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-2} -z^{10} a^{-4} -2 z^9 a^{-1} -6 z^9 a^{-3} -4 z^9 a^{-5} -5 z^8 a^{-2} -11 z^8 a^{-4} -8 z^8 a^{-6} -2 z^8-a z^7+z^7 a^{-1} +4 z^7 a^{-3} -7 z^7 a^{-5} -9 z^7 a^{-7} +20 z^6 a^{-2} +28 z^6 a^{-4} +9 z^6 a^{-6} -6 z^6 a^{-8} +7 z^6+5 a z^5+17 z^5 a^{-1} +31 z^5 a^{-3} +37 z^5 a^{-5} +15 z^5 a^{-7} -3 z^5 a^{-9} -13 z^4 a^{-2} -10 z^4 a^{-4} +3 z^4 a^{-6} +6 z^4 a^{-8} -z^4 a^{-10} -7 z^4-9 a z^3-33 z^3 a^{-1} -48 z^3 a^{-3} -41 z^3 a^{-5} -15 z^3 a^{-7} +2 z^3 a^{-9} -z^2 a^{-2} -6 z^2 a^{-4} -9 z^2 a^{-6} -4 z^2 a^{-8} +z^2 a^{-10} +z^2+7 a z+22 z a^{-1} +29 z a^{-3} +20 z a^{-5} +6 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



