L11a461
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a461's Link Presentations]
| Planar diagram presentation | X6172 X14,4,15,3 X18,15,19,16 X16,6,17,5 X12,18,5,17 X8,22,9,21 X20,8,21,7 X22,10,13,9 X10,14,11,13 X2,11,3,12 X4,20,1,19 |
| Gauss code | {1, -10, 2, -11}, {4, -1, 7, -6, 8, -9, 10, -5}, {9, -2, 3, -4, 5, -3, 11, -7, 6, -8} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(3)^3 t(2)^3-t(3)^3 t(2)^3-2 t(1) t(3)^2 t(2)^3+2 t(3)^2 t(2)^3-t(3) t(2)^3-2 t(1) t(3)^3 t(2)^2+2 t(3)^3 t(2)^2+4 t(1) t(3)^2 t(2)^2-4 t(3)^2 t(2)^2-2 t(1) t(3) t(2)^2+3 t(3) t(2)^2-t(2)^2+t(1) t(3)^3 t(2)-3 t(1) t(3)^2 t(2)+2 t(3)^2 t(2)-2 t(1) t(2)+4 t(1) t(3) t(2)-4 t(3) t(2)+2 t(2)+t(1) t(3)^2+t(1)-2 t(1) t(3)+2 t(3)-1}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-3 q^9+7 q^8-10 q^7+14 q^6-15 q^5+16 q^4-13 q^3+10 q^2-6 q+4- q^{-1} } (db) |
| Signature | 4 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-8} +3 z^2 a^{-8} + a^{-8} z^{-2} +2 a^{-8} -2 z^6 a^{-6} -8 z^4 a^{-6} -9 z^2 a^{-6} -2 a^{-6} z^{-2} -5 a^{-6} +z^8 a^{-4} +5 z^6 a^{-4} +8 z^4 a^{-4} +5 z^2 a^{-4} + a^{-4} z^{-2} + a^{-4} -z^6 a^{-2} -3 z^4 a^{-2} +2 a^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-12} -z^2 a^{-12} +3 z^5 a^{-11} -2 z^3 a^{-11} +6 z^6 a^{-10} -8 z^4 a^{-10} +6 z^2 a^{-10} -2 a^{-10} +7 z^7 a^{-9} -8 z^5 a^{-9} +2 z^3 a^{-9} +z a^{-9} +7 z^8 a^{-8} -11 z^6 a^{-8} +8 z^4 a^{-8} -6 z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} +5 z^9 a^{-7} -6 z^7 a^{-7} -4 z^5 a^{-7} +9 z^3 a^{-7} -8 z a^{-7} +2 a^{-7} z^{-1} +2 z^{10} a^{-6} +5 z^8 a^{-6} -29 z^6 a^{-6} +37 z^4 a^{-6} -24 z^2 a^{-6} -2 a^{-6} z^{-2} +9 a^{-6} +10 z^9 a^{-5} -33 z^7 a^{-5} +29 z^5 a^{-5} -z^3 a^{-5} -8 z a^{-5} +2 a^{-5} z^{-1} +2 z^{10} a^{-4} +2 z^8 a^{-4} -28 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +5 z^9 a^{-3} -19 z^7 a^{-3} +19 z^5 a^{-3} -5 z^3 a^{-3} +z a^{-3} +4 z^8 a^{-2} -16 z^6 a^{-2} +16 z^4 a^{-2} -2 z^2 a^{-2} -2 a^{-2} +z^7 a^{-1} -3 z^5 a^{-1} +z^3 a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



