L11a291
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a291's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X8,9,1,10 X18,12,19,11 X20,13,21,14 X22,16,9,15 X14,7,15,8 X6,22,7,21 X4,18,5,17 X16,6,17,5 X2,19,3,20 |
| Gauss code | {1, -11, 2, -9, 10, -8, 7, -3}, {3, -1, 4, -2, 5, -7, 6, -10, 9, -4, 11, -5, 8, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(1) t(2)^4+t(1)^2 t(2)^3-3 t(1) t(2)^3+t(2)^3-2 t(1)^2 t(2)^2+2 t(1) t(2)^2-2 t(2)^2+t(1)^2 t(2)-3 t(1) t(2)+t(2)+t(1)\right)}{t(1)^{3/2} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{11/2}+5 q^{9/2}-10 q^{7/2}+15 q^{5/2}-21 q^{3/2}+22 \sqrt{q}-\frac{23}{\sqrt{q}}+\frac{20}{q^{3/2}}-\frac{14}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^5-z^5 a^{-3} -2 a^3 z^3-z^3 a^{-3} +2 z a^{-3} +a z^7+z^7 a^{-1} +3 a z^5+2 z^5 a^{-1} +3 a z^3-2 z^3 a^{-1} +2 a z-4 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -4 z^{10} a^{-2} -4 z^{10}-11 a z^9-19 z^9 a^{-1} -8 z^9 a^{-3} -14 a^2 z^8-2 z^8 a^{-2} -5 z^8 a^{-4} -11 z^8-12 a^3 z^7+16 a z^7+54 z^7 a^{-1} +25 z^7 a^{-3} -z^7 a^{-5} -8 a^4 z^6+23 a^2 z^6+35 z^6 a^{-2} +15 z^6 a^{-4} +51 z^6-4 a^5 z^5+14 a^3 z^5+3 a z^5-37 z^5 a^{-1} -20 z^5 a^{-3} +2 z^5 a^{-5} -a^6 z^4+6 a^4 z^4-10 a^2 z^4-34 z^4 a^{-2} -11 z^4 a^{-4} -40 z^4+2 a^5 z^3-4 a^3 z^3-9 a z^3-z^3 a^{-1} +z^3 a^{-3} -z^3 a^{-5} -a^4 z^2-a^2 z^2+5 z^2 a^{-2} +5 z^2+4 a z+8 z a^{-1} +4 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



