L11n423

From Knot Atlas
Revision as of 18:08, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n422.gif

L11n422

L11n424.gif

L11n424

L11n423.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n423 at Knotilus!


Link Presentations

[edit Notes on L11n423's Link Presentations]

Planar diagram presentation X8192 X16,8,17,7 X10,4,11,3 X2,18,3,17 X18,9,19,10 X20,12,21,11 X5,14,6,15 X15,13,16,22 X13,6,14,1 X4,19,5,20 X12,22,7,21
Gauss code {1, -4, 3, -10, -7, 9}, {2, -1, 5, -3, 6, -11}, {-9, 7, -8, -2, 4, -5, 10, -6, 11, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n423 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123χ
9        1-1
7       2 2
5      22 0
3     321 2
1    34   1
-1   221   1
-3  24     2
-5 11      0
-7 2       2
-91        -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n422.gif

L11n422

L11n424.gif

L11n424