L10a14
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a14's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X14,8,15,7 X20,16,5,15 X16,9,17,10 X8,19,9,20 X18,13,19,14 X12,17,13,18 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -6, 5, -2, 10, -8, 7, -3, 4, -5, 8, -7, 6, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1)^3 \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+4 q^{5/2}-9 q^{3/2}+12 \sqrt{q}-\frac{16}{\sqrt{q}}+\frac{16}{q^{3/2}}-\frac{15}{q^{5/2}}+\frac{12}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a z^7-2 a^3 z^5+4 a z^5-z^5 a^{-1} +a^5 z^3-6 a^3 z^3+7 a z^3-2 z^3 a^{-1} +2 a^5 z-7 a^3 z+7 a z-2 z a^{-1} +a^5 z^{-1} -3 a^3 z^{-1} +4 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^3 z^9-2 a z^9-5 a^4 z^8-12 a^2 z^8-7 z^8-5 a^5 z^7-11 a^3 z^7-14 a z^7-8 z^7 a^{-1} -3 a^6 z^6+3 a^4 z^6+18 a^2 z^6-4 z^6 a^{-2} +8 z^6-a^7 z^5+7 a^5 z^5+30 a^3 z^5+38 a z^5+15 z^5 a^{-1} -z^5 a^{-3} +5 a^6 z^4+5 a^4 z^4-4 a^2 z^4+5 z^4 a^{-2} +z^4+2 a^7 z^3-4 a^5 z^3-28 a^3 z^3-33 a z^3-10 z^3 a^{-1} +z^3 a^{-3} -3 a^6 z^2-7 a^4 z^2-5 a^2 z^2-z^2 a^{-2} -2 z^2-a^7 z+2 a^5 z+13 a^3 z+15 a z+5 z a^{-1} +a^6+3 a^4+3 a^2+2-a^5 z^{-1} -3 a^3 z^{-1} -4 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



