L11n381
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n381's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X9,16,10,17 X2,14,3,13 |
| Gauss code | {1, -11, 5, -3}, {-8, 7, 9, -6}, {-4, -1, 2, -5, -10, 4, -7, 8, 11, -2, 3, 10, 6, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | 0 (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-7} + q^{-6} - q^{-5} + q^{-3} + q^{-2} +q+2 q^{-1} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 \left(-z^2\right)-a^6 z^{-2} -2 a^6+a^4 z^4+5 a^4 z^2+4 a^4 z^{-2} +7 a^4-a^2 z^4-5 a^2 z^2-5 a^2 z^{-2} -8 a^2+z^2+2 z^{-2} +3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^8+a^4 z^8+a^7 z^7+2 a^5 z^7+a^3 z^7-6 a^6 z^6-7 a^4 z^6-a^2 z^6-6 a^7 z^5-14 a^5 z^5-8 a^3 z^5+9 a^6 z^4+15 a^4 z^4+7 a^2 z^4+z^4+10 a^7 z^3+28 a^5 z^3+20 a^3 z^3+2 a z^3-4 a^6 z^2-15 a^4 z^2-15 a^2 z^2-4 z^2-6 a^7 z-19 a^5 z-21 a^3 z-8 a z+3 a^6+10 a^4+11 a^2+5+a^7 z^{-1} +5 a^5 z^{-1} +9 a^3 z^{-1} +5 a z^{-1} -a^6 z^{-2} -4 a^4 z^{-2} -5 a^2 z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



